Source code for livef1.data_processing.silver_functions

import pandas as pd
import numpy as np
from datetime import timedelta

from ..utils.helper import to_datetime
from ..utils.constants import interpolation_map

[docs] def generate_laps_table(bronze_lake): df_exp = bronze_lake.get("TimingData") df_rcm = bronze_lake.get("RaceControlMessages") if "_deleted" not in df_exp.columns: df_exp["_deleted"] = None else: df_exp["_deleted"] = df_exp["_deleted"].fillna(False) sector_cols = { "Sectors_0_Value": "sector1_time", "Sectors_1_Value": "sector2_time", "Sectors_2_Value": "sector3_time", "Sectors_0_PreviousValue": None, "Sectors_1_PreviousValue": None, "Sectors_2_PreviousValue": None } speedTrap_cols = { "Speeds_I1_Value": "speed_I1", "Speeds_I2_Value": "speed_I2", "Speeds_FL_Value": "speed_FL", "Speeds_ST_Value": "speed_ST", } pit_cols = { "InPit": "in_pit", "PitOut": "pit_out" } base_cols = { "NumberOfLaps": "lap_number", "LastLapTime_Value": "lap_time" } extra_cols = [ "no_pits", "sector1_finish_timestamp", "sector2_finish_timestamp", "sector3_finish_timestamp" ] extra_raw_cols = ["RacingNumber","Stopped","_deleted"] col_map = {**base_cols, **pit_cols, **sector_cols, **speedTrap_cols} cols = list(base_cols.values()) + list(pit_cols.values()) + list(sector_cols.values()) + list(speedTrap_cols.values()) raw_cols = list(base_cols.keys()) + list(pit_cols.keys()) + list(sector_cols.keys()) + list(speedTrap_cols.keys()) + extra_raw_cols def str_timedelta(x): if isinstance(x, str): count_sep = x.count(":") if count_sep == 0: return "00:00:" + x elif count_sep == 1: return "00:" + x else: return x else: return x def enter_new_lap(laps, record): if laps is None and record is None: no_pits = 0 laps = [] record = {key: None if key != "lap_number" else 1 for key in cols} record["no_pits"] = no_pits return [], record, timedelta(seconds=0) if (record["lap_time"] is None) & ((record["sector1_time"] != None) and (record["sector2_time"] != None) and (record["sector3_time"] != None)): record["lap_time"] = record["sector1_time"] + record["sector2_time"] + record["sector3_time"] laps.append(record) no_pits = record["no_pits"] record = {key: None if key != "lap_number" else val + 1 for key, val in record.items()} record["no_pits"] = no_pits return laps, record all_laps = [] for driver_no in df_exp["DriverNo"].unique(): df_driver = df_exp[df_exp["DriverNo"] == driver_no] df_test = df_driver[["timestamp"] + raw_cols].dropna(subset=raw_cols, how="all").replace('', np.nan) for col in ["Sectors_0_Value", "Sectors_1_Value", "Sectors_2_Value", "Sectors_0_PreviousValue", "Sectors_1_PreviousValue", "Sectors_2_PreviousValue", "LastLapTime_Value"]: df_test[col] = df_test[col] df_test[col] = pd.to_timedelta(df_test[col].apply(str_timedelta)) new_lap_allowed = True laps, record, last_record_ts = enter_new_lap(None, None) for idx, row in df_test[df_test.RacingNumber.isna()].iterrows(): ts = pd.to_timedelta(row.timestamp) if row.Stopped == True: laps, record = enter_new_lap(laps, record) continue if not pd.isnull(row.LastLapTime_Value): if not pd.isnull(row.Sectors_2_Value): record[col_map["LastLapTime_Value"]] = row.LastLapTime_Value elif not pd.isnull(row.Sectors_2_PreviousValue): laps[-1][col_map["LastLapTime_Value"]] = row.LastLapTime_Value ## Iterate over all columns for sc_key, sc_value in row.to_dict().items(): if (sc_key == "_deleted"): continue elif not pd.isna(sc_value): if sc_key in speedTrap_cols: record[col_map[sc_key]] = sc_value elif sc_key in pit_cols: if sc_key == "InPit": if sc_value == 1: record[col_map[sc_key]] = ts elif sc_key == "PitOut": if sc_value == True: record[col_map[sc_key]] = ts record["no_pits"] += 1 elif sc_key in sector_cols: sc_no = int(sc_key.split("_")[1]) key_type = sc_key.split("_")[2] if key_type == "Value": if record[f"sector{str(sc_no + 1)}_time"] == None: record[f"sector{str(sc_no + 1)}_time"] = sc_value last_record_ts = ts if sc_no == 2: laps, record = enter_new_lap(laps, record) record["lap_start_time"] = ts elif sc_value == record[f"sector{str(sc_no + 1)}_time"]: pass elif ts - last_record_ts > timedelta(seconds=10): laps, record = enter_new_lap(laps, record) record[f"sector{str(sc_no + 1)}_time"] = sc_value record["lap_start_time"] = ts - sc_value last_record_ts = ts elif key_type == "PreviousValue": if sc_no != 2: record[f"sector{str(sc_no + 1)}_time"] = sc_value last_record_ts = ts elif len(laps) > 0: laps[-1][f"sector{str(sc_no + 1)}_time"] = sc_value last_record_ts = ts laps_df = pd.DataFrame(laps) laps_df["DriverNo"] = driver_no all_laps.append(laps_df) all_laps_df = pd.concat(all_laps, ignore_index=True) def delete_laps(laps_df, df_rcm): laps_df["isDeleted"] = False df_rcm_del = df_rcm[(df_rcm["Category"] == "Other") & (df_rcm.Message.str.split(" ").str[0] == "CAR")] df_rcm_del["deleted_driver"] = df_rcm_del.Message.str.split(" ").str[1] df_rcm_del["deleted_type"] = df_rcm_del.Message.str.split(" ").str[3] df_rcm_del["deleted_time"] = df_rcm_del.apply(lambda x: x.Message.split(" ")[4] if x.deleted_type == "TIME" else None, axis=1) for idx, row in df_rcm_del[df_rcm_del["Message"].str.contains("REINSTATED") & (df_rcm_del["deleted_type"] == "TIME")].iterrows(): driver = row.deleted_driver time = row.deleted_time df_rcm_del = df_rcm_del.drop(df_rcm_del[(df_rcm_del.deleted_driver == driver) & (df_rcm_del.deleted_time == time)].index) # print(df_rcm_del) # for idx, row in df_rcm_del.iterrows(): # print(row.Message) # row.Message.split(" ")[12] # row.Message.split(" ")[13] def lap_finder(x): if len(x.Message.split(" ")) > 12: if x.deleted_type == "LAP": return x.Message.split(" ")[12] elif x.deleted_type == "TIME": return x.Message.split(" ")[13] else: return None else: return None if len(df_rcm_del) > 0: df_rcm_del["deleted_lap"] = df_rcm_del.apply(lambda x: lap_finder(x), axis=1) # df_rcm_del["deleted_lap"] = df_rcm_del.apply(lambda x: x.Message.split(" ")[12] if x.deleted_type == "LAP" else x.Message.split(" ")[13] if x.deleted_type == "TIME" else None, axis=1) for idx, row in df_rcm_del.iterrows(): try: int(row["deleted_lap"]) except: continue row_bool = (laps_df["lap_number"] == int(row["deleted_lap"])) & (laps_df["DriverNo"] == row["deleted_driver"]) laps_df.loc[row_bool, "isDeleted"] = True laps_df.loc[row_bool, "deletionMessage"] = row["Message"] return laps_df ## TODO: This is a temporary fix for the sector times. # segments = ["sector1_time", "sector2_time", "sector3_time"] # for idx in range(len(segments)): # rest = np.delete(segments, idx) # all_laps_df[segments[idx]] = ( # all_laps_df[segments[idx]].fillna(timedelta(minutes=0)) + (all_laps_df[segments[idx]].isnull() & (all_laps_df["lap_number"] > 1) & (~all_laps_df["lap_time"].isnull())) * (all_laps_df[segments[idx]].isnull() * (all_laps_df["lap_time"].fillna(timedelta(minutes=0)) - all_laps_df[rest].sum(axis=1)))).replace(timedelta(minutes=0), np.timedelta64("NaT")) new_ts = (all_laps_df["lap_start_time"] + all_laps_df["lap_time"]).shift(1) all_laps_df["lap_start_time"] = (new_ts.isnull() * all_laps_df["lap_start_time"]) + new_ts.fillna(timedelta(0)) all_laps_df["lap_start_date"] = (all_laps_df["lap_start_time"] + bronze_lake.great_lake.session.first_datetime).fillna(bronze_lake.great_lake.session.session_start_datetime) all_laps_df = delete_laps(all_laps_df, df_rcm) return all_laps_df
[docs] def generate_car_telemetry_table(bronze_lake): """ Generates a telemetry table for car data by combining and processing position and car data from the provided BronzeLake object. The function interpolates missing data, aligns it with session laps, and calculates cumulative distance covered during each lap. Args: bronze_lake (BronzeLake): An object containing the raw position and car data, as well as session and circuit information. Returns: pd.DataFrame: A DataFrame containing processed telemetry data for all drivers, including: - DriverNo: Driver number. - Utc: Timestamp in UTC. - lap_number: Lap number for the driver. - Distance: Cumulative distance covered during the lap. - SessionKey: Session identifier. - timestamp: Time elapsed since the session start. - Other interpolated and processed telemetry data. Notes: - The function interpolates missing data based on predefined interpolation methods. - Data is filtered to include only timestamps within the lap start and end times. - Cumulative distance is calculated for each lap using speed and timestamp data, adjusted for the circuit's starting line position and direction. Raises: ValueError: If required data is missing or cannot be processed. """ session = bronze_lake.great_lake.session df_pos = bronze_lake.get("Position.z") df_pos["Utc"] = to_datetime(df_pos["Utc"]) df_pos["timestamp"] = pd.to_timedelta(df_pos["timestamp"]) df_car = bronze_lake.get("CarData.z") df_car["Utc"] = to_datetime(df_car["Utc"]) df_car["timestamp"] = pd.to_timedelta(df_car["timestamp"]) df = df_car.set_index(["DriverNo", "Utc"]).join(df_pos.set_index(["DriverNo", "Utc"]), rsuffix="_pos", how="outer").reset_index().sort_values(["DriverNo", "Utc"]) all_drivers_data = [] for driver_no in df["DriverNo"].unique(): df_driver = df[df["DriverNo"] == driver_no].set_index("Utc") laps = session.laps laps_driver = laps[laps["DriverNo"] == driver_no] for col in df_driver.columns: if col in interpolation_map: if len(df_driver[col].dropna()) < len(df_driver)*0.2: continue df_driver[col] = df_driver[col].interpolate(method=interpolation_map[col], order=2).values laps_driver.loc[:, "lap_end_date"] = laps_driver["lap_start_date"] + laps_driver["lap_time"] df_driver = df_driver.join(laps_driver[["lap_start_date", "lap_number"]].set_index("lap_start_date"), how="outer") df_driver["lap_number"] = df_driver["lap_number"].ffill().bfill() df_driver.index.names = ['Utc'] df_driver = df_driver.reset_index() df_driver = df_driver[df_driver.Utc.between(laps_driver["lap_start_date"].min(), laps_driver["lap_end_date"].max())] df_driver["SessionKey"] = df_driver["SessionKey"].ffill().bfill() df_driver["timestamp"] = df_driver["Utc"] - session.first_datetime df_driver = df_driver.dropna(subset=["DriverNo"]) # Iterate through each unique lap number for the driver to calculate and add the cumulative distance # covered during the lap based on speed and timestamp, adjusted for the starting line position. for lap_no in df_driver["lap_number"].unique(): lap_df = df_driver[df_driver["lap_number"] == lap_no] lap_df = add_distance_to_lap( lap_df, session.meeting.circuit.start_coordinates[0], session.meeting.circuit.start_coordinates[1], session.meeting.circuit.start_direction[0], session.meeting.circuit.start_direction[1] ) df_driver.loc[lap_df.index, "Distance"] = lap_df["Distance"].values all_drivers_data.append(df_driver) all_drivers_df = pd.concat(all_drivers_data, ignore_index=True) return all_drivers_df
[docs] def add_distance_to_lap(lap_df, start_x, start_y, x_coeff, y_coeff): """ Calculates the cumulative distance covered by a car during a lap based on its speed and timestamp. Adjusts the distance based on the starting line coordinates and direction. Args: lap_df (pd.DataFrame): DataFrame containing lap data with columns 'speed', 'timestamp', 'X', and 'Y'. start_x (float): X-coordinate of the starting line. start_y (float): Y-coordinate of the starting line. x_coeff (float): Coefficient for determining direction along the X-axis. y_coeff (float): Coefficient for determining direction along the Y-axis. Returns: pd.DataFrame: Updated DataFrame with a new 'Distance' column representing the cumulative distance. """ if len(lap_df) > 0: # Calculate cumulative distance based on speed and time difference lap_df["Distance"] = ((lap_df.speed / 3.6) * lap_df["timestamp"].diff().dt.total_seconds()).cumsum() # Get the first row to determine the starting line position start_line = lap_df.iloc[0] # Determine the direction based on the starting line coordinates and coefficients if ((start_line.X - start_x) / x_coeff > 0) & ((start_line.Y - start_y) / y_coeff > 0): direction = 1 else: direction = -1 # Calculate the initial distance from the starting line distance = direction * (((start_line.X - start_x)**2 + (start_line.Y - start_y)**2)**0.5) / 10 # Adjust the cumulative distance with the initial distance lap_df["Distance"] = distance + lap_df["Distance"].fillna(0) return lap_df