import pandas as pd
import numpy as np
from datetime import timedelta
from ..utils.helper import to_datetime
from ..utils.constants import interpolation_map, silver_cartel_col_order, silver_laps_col_order
# def generate_laps_table(bronze_lake):
# def delete_laps(laps_df, df_rcm):
# laps_df["IsDeleted"] = False
# df_rcm_del = df_rcm[(df_rcm["Category"] == "Other") & (df_rcm.Message.str.split(" ").str[0] == "CAR")]
# df_rcm_del["deleted_driver"] = df_rcm_del.Message.str.split(" ").str[1]
# df_rcm_del["deleted_type"] = df_rcm_del.Message.str.split(" ").str[3]
# df_rcm_del["deleted_time"] = df_rcm_del.apply(lambda x: x.Message.split(" ")[4] if x.deleted_type == "TIME" else None, axis=1)
# for idx, row in df_rcm_del[df_rcm_del["Message"].str.contains("REINSTATED") & (df_rcm_del["deleted_type"] == "TIME")].iterrows():
# driver = row.deleted_driver
# time = row.deleted_time
# df_rcm_del = df_rcm_del.drop(df_rcm_del[(df_rcm_del.deleted_driver == driver) & (df_rcm_del.deleted_time == time)].index)
# def lap_finder(x):
# if len(x.Message.split(" ")) > 12:
# if x.deleted_type == "LAP":
# return x.Message.split(" ")[12]
# elif x.deleted_type == "TIME":
# return x.Message.split(" ")[13]
# else:
# return None
# else:
# return None
# if len(df_rcm_del) > 0:
# df_rcm_del["deleted_lap"] = df_rcm_del.apply(lambda x: lap_finder(x), axis=1)
# for idx, row in df_rcm_del.iterrows():
# try: int(row["deleted_lap"])
# except: continue
# row_bool = (laps_df["LapNo"] == int(row["deleted_lap"])) & (laps_df["DriverNo"] == row["deleted_driver"])
# laps_df.loc[row_bool, "IsDeleted"] = True
# laps_df.loc[row_bool, "DeletionMessage"] = row["Message"]
# return laps_df
# session = bronze_lake.great_lake.session
# # Get Timing Data
# df_exp = bronze_lake.get("TimingData")
# # Get Race Control Messages
# df_rcm = bronze_lake.get("RaceControlMessages")
# # Get Pit Stop Data
# df_pit = bronze_lake.get("PitStopSeries")
# df_pit = df_pit[["RacingNumber", "PitStopTime", "PitLaneTime", "Lap"]].rename(columns={"RacingNumber": "DriverNo", "Lap":"LapNo", "PitStopTime": "PitStopDuration", "PitLaneTime":"PitLaneDuration"})
# df_pit["LapNo"] = df_pit["LapNo"].astype(int)
# # Get Tyre Stint Data
# df_tyre = bronze_lake.get("TyreStintSeries")
# df_tyre["timestamp"] = pd.to_timedelta(df_tyre["timestamp"])
# # Get Session Data
# sessionKey = df_exp["SessionKey"].values[0]
# if "_deleted" not in df_exp.columns:
# df_exp["_deleted"] = None
# else:
# df_exp["_deleted"] = df_exp["_deleted"].fillna(False)
# sector_cols = {
# "Sectors_0_Value": "Sector1_Time",
# "Sectors_1_Value": "Sector2_Time",
# "Sectors_2_Value": "Sector3_Time",
# "Sectors_0_PreviousValue": None,
# "Sectors_1_PreviousValue": None,
# "Sectors_2_PreviousValue": None
# }
# speedTrap_cols = {
# "Speeds_I1_Value": "Speed_I1",
# "Speeds_I2_Value": "Speed_I2",
# "Speeds_FL_Value": "Speed_FL",
# "Speeds_ST_Value": "Speed_ST",
# }
# pit_cols = {
# "InPit": "PitIn",
# "PitOut": "PitOut"
# }
# base_cols = {
# "NumberOfLaps": "LapNo",
# "LastLapTime_Value": "LapTime"
# }
# extra_cols = [
# "NoPits",
# "sector1_finish_timestamp",
# "sector2_finish_timestamp",
# "sector3_finish_timestamp"
# ]
# extra_raw_cols = ["RacingNumber","Stopped","_deleted"]
# col_map = {**base_cols, **pit_cols, **sector_cols, **speedTrap_cols}
# cols = list(base_cols.values()) + list(pit_cols.values()) + list(sector_cols.values()) + list(speedTrap_cols.values())
# raw_cols = list(base_cols.keys()) + list(pit_cols.keys()) + list(sector_cols.keys()) + list(speedTrap_cols.keys()) + extra_raw_cols
# def str_timedelta(x):
# if isinstance(x, str):
# count_sep = x.count(":")
# if count_sep == 0:
# return "00:00:" + x
# elif count_sep == 1:
# return "00:" + x
# else:
# return x
# else:
# return x
# def enter_new_lap(laps, record):
# if laps is None and record is None:
# NoPits = 0
# laps = []
# record = {key: None if key != "LapNo" else 1 for key in cols}
# record["NoPits"] = NoPits
# return [], record, timedelta(seconds=0)
# if (record["LapTime"] is None) & ((record["Sector1_Time"] != None) and (record["Sector2_Time"] != None) and (record["Sector3_Time"] != None)):
# record["LapTime"] = record["Sector1_Time"] + record["Sector2_Time"] + record["Sector3_Time"]
# laps.append(record)
# NoPits = record["NoPits"]
# record = {key: None if key != "LapNo" else val + 1 for key, val in record.items()}
# record["NoPits"] = NoPits
# return laps, record
# all_laps = []
# for driver_no in df_exp["DriverNo"].unique():
# df_driver = df_exp[df_exp["DriverNo"] == driver_no]
# df_test = df_driver[["timestamp"] + raw_cols].dropna(subset=raw_cols, how="all").replace('', np.nan)
# for col in ["Sectors_0_Value", "Sectors_1_Value", "Sectors_2_Value", "Sectors_0_PreviousValue", "Sectors_1_PreviousValue", "Sectors_2_PreviousValue", "LastLapTime_Value"]:
# df_test[col] = df_test[col]
# df_test[col] = pd.to_timedelta(df_test[col].apply(str_timedelta))
# new_lap_allowed = True
# laps, record, last_record_ts = enter_new_lap(None, None)
# for idx, row in df_test[df_test.RacingNumber.isna()].iterrows():
# ts = pd.to_timedelta(row.timestamp)
# if row.Stopped == True:
# laps, record = enter_new_lap(laps, record)
# continue
# if not pd.isnull(row.LastLapTime_Value):
# if not pd.isnull(row.Sectors_2_Value):
# record[col_map["LastLapTime_Value"]] = row.LastLapTime_Value
# elif not pd.isnull(row.Sectors_2_PreviousValue):
# laps[-1][col_map["LastLapTime_Value"]] = row.LastLapTime_Value
# ## Iterate over all columns
# for sc_key, sc_value in row.to_dict().items():
# if (sc_key == "_deleted"): continue
# elif not pd.isna(sc_value):
# if sc_key in speedTrap_cols:
# record[col_map[sc_key]] = sc_value
# elif sc_key in pit_cols:
# if sc_key == "InPit":
# if sc_value == 1:
# record[col_map[sc_key]] = ts
# elif sc_key == "PitOut":
# if sc_value == True:
# record[col_map[sc_key]] = ts
# record["NoPits"] += 1
# elif sc_key in sector_cols:
# sc_no = int(sc_key.split("_")[1])
# key_type = sc_key.split("_")[2]
# if key_type == "Value":
# if record[f"Sector{str(sc_no + 1)}_Time"] == None:
# record[f"Sector{str(sc_no + 1)}_Time"] = sc_value
# last_record_ts = ts
# if sc_no == 2:
# laps, record = enter_new_lap(laps, record)
# record["LapStartTime"] = ts
# elif sc_value == record[f"Sector{str(sc_no + 1)}_Time"]:
# pass
# elif ts - last_record_ts > timedelta(seconds=10):
# laps, record = enter_new_lap(laps, record)
# record[f"Sector{str(sc_no + 1)}_Time"] = sc_value
# record["LapStartTime"] = ts - sc_value
# last_record_ts = ts
# elif key_type == "PreviousValue":
# if sc_no != 2:
# record[f"Sector{str(sc_no + 1)}_Time"] = sc_value
# last_record_ts = ts
# elif len(laps) > 0:
# laps[-1][f"Sector{str(sc_no + 1)}_Time"] = sc_value
# last_record_ts = ts
# laps_df = pd.DataFrame(laps)
# laps_df["DriverNo"] = driver_no
# all_laps.append(laps_df)
# all_laps_df = pd.concat(all_laps, ignore_index=True)
# new_ts = (all_laps_df["LapStartTime"] + all_laps_df["LapTime"]).shift(1)
# all_laps_df["LapStartTime"] = (new_ts.isnull() * all_laps_df["LapStartTime"]) + new_ts.fillna(timedelta(0))
# all_laps_df["LapStartDate"] = (all_laps_df["LapStartTime"] + bronze_lake.great_lake.session.first_datetime).fillna(bronze_lake.great_lake.session.session_start_datetime)
# all_laps_df["LapStartTime"] = all_laps_df["LapStartTime"].fillna(all_laps_df.iloc[1].LapStartTime - (all_laps_df.iloc[1].LapStartDate - all_laps_df.iloc[0].LapStartDate))
# # Delete laps
# all_laps_df = delete_laps(all_laps_df, df_rcm)
# # Add session data
# all_laps_df["SessionKey"] = sessionKey
# # Add driver data
# all_laps_df["Driver"] = all_laps_df["DriverNo"].map(session.drivers)
# # Add pit data
# all_laps_df = all_laps_df.set_index(["DriverNo", "LapNo"]).join(df_pit.set_index(["DriverNo", "LapNo"])).reset_index()
# # Add tyre data
# all_laps_df["LapEndTime"] = all_laps_df["LapStartTime"] + all_laps_df["LapTime"]
# all_laps_df = all_laps_df.set_index(["DriverNo", "LapEndTime"]).join(
# df_tyre.rename(columns={"timestamp":"LapEndTime", "TotalLaps":"TyreAge"}).set_index(["DriverNo", "LapEndTime"]),
# how="outer"
# )
# all_laps_df[["Compound","New","TyreAge"]] = all_laps_df.groupby('DriverNo')[["Compound","New","TyreAge"]].ffill()
# all_laps_df = all_laps_df.reset_index().dropna(subset = "SessionKey")
# return all_laps_df[silver_laps_col_order]
# def generate_car_telemetry_table(bronze_lake):
# """
# Generates a telemetry table for car data by combining and processing position and car data
# from the provided BronzeLake object. The function interpolates missing data, aligns it with
# session laps, and calculates cumulative distance covered during each lap.
# Args:
# bronze_lake (BronzeLake): An object containing the raw position and car data, as well as
# session and circuit information.
# Returns:
# pd.DataFrame: A DataFrame containing processed telemetry data for all drivers, including:
# - DriverNo: Driver number.
# - Utc: Timestamp in UTC.
# - LapNo: Lap number for the driver.
# - Distance: Cumulative distance covered during the lap.
# - SessionKey: Session identifier.
# - timestamp: Time elapsed since the session start.
# - Other interpolated and processed telemetry data.
# Notes:
# - The function interpolates missing data based on predefined interpolation methods.
# - Data is filtered to include only timestamps within the lap start and end times.
# - Cumulative distance is calculated for each lap using speed and timestamp data, adjusted
# for the circuit's starting line position and direction.
# Raises:
# ValueError: If required data is missing or cannot be processed.
# """
# # Get session data
# session = bronze_lake.great_lake.session
# # Get position data
# df_pos = bronze_lake.get("Position.z").drop(columns=["SessionKey", "timestamp"])
# df_pos["Utc"] = to_datetime(df_pos["Utc"])
# # Get car data
# df_car = bronze_lake.get("CarData.z")
# df_car["Utc"] = to_datetime(df_car["Utc"])
# df_car["timestamp"] = pd.to_timedelta(df_car["timestamp"])
# # Get tyre data
# df_tyre = bronze_lake.get("TyreStintSeries")
# df_tyre["timestamp"] = pd.to_timedelta(df_tyre["timestamp"])
# # Join car and position data
# df = df_car.set_index(["DriverNo", "Utc"]).join(df_pos.set_index(["DriverNo", "Utc"]), rsuffix="_pos", how="outer").reset_index().sort_values(["DriverNo", "Utc"])
# df["Status"] = df["Status"].ffill()
# all_drivers_data = []
# for driver_no in df["DriverNo"].unique():
# df_driver = df[df["DriverNo"] == driver_no].set_index("Utc")
# laps = session.laps
# laps_driver = laps[laps["DriverNo"] == driver_no]
# for col in df_driver.columns:
# if col in interpolation_map:
# if len(df_driver[col].dropna()) < len(df_driver)*0.2:
# continue
# df_driver[col] = df_driver[col].interpolate(method=interpolation_map[col], order=2).values
# laps_driver.loc[:, "lap_end_date"] = laps_driver["LapStartDate"] + laps_driver["LapTime"]
# df_driver = df_driver.join(laps_driver[["LapStartDate", "LapNo"]].set_index("LapStartDate"), how="outer")
# df_driver["LapNo"] = df_driver["LapNo"].ffill().bfill()
# df_driver.index.names = ['Utc']
# df_driver = df_driver.reset_index()
# df_driver = df_driver[df_driver.Utc.between(laps_driver["LapStartDate"].min(), laps_driver["lap_end_date"].max())]
# df_driver["SessionKey"] = df_driver["SessionKey"].ffill().bfill()
# df_driver["timestamp"] = df_driver["Utc"] - session.first_datetime
# df_driver = df_driver.dropna(subset=["DriverNo"])
# # Iterate through each unique lap number for the driver to calculate and add the cumulative distance
# # covered during the lap based on speed and timestamp, adjusted for the starting line position.
# for lap_no in df_driver["LapNo"].unique():
# lap_df = df_driver[df_driver["LapNo"] == lap_no]
# lap_df = add_distance_to_lap(
# lap_df,
# session.meeting.circuit.start_coordinates[0],
# session.meeting.circuit.start_coordinates[1],
# session.meeting.circuit.start_direction[0],
# session.meeting.circuit.start_direction[1]
# )
# df_driver.loc[lap_df.index, "Distance"] = lap_df["Distance"].values
# all_drivers_data.append(df_driver)
# all_drivers_df = pd.concat(all_drivers_data, ignore_index=True)
# # Add Tyre Data
# all_drivers_df = all_drivers_df.set_index(["DriverNo", "timestamp"]).join(
# df_tyre.rename(columns={"TotalLaps":"TyreAge"}).set_index(["DriverNo", "timestamp"]),
# how="outer"
# )
# all_drivers_df[["Compound","New","TyreAge"]] = all_drivers_df.groupby('DriverNo')[["Compound","New","TyreAge"]].ffill()
# all_drivers_df = all_drivers_df.reset_index().dropna(subset = ["SessionKey"])
# return all_drivers_df[silver_cartel_col_order]
[docs]
def add_distance_to_lap(lap_df, start_x, start_y, x_coeff, y_coeff):
"""
Calculates the cumulative distance covered by a car during a lap based on its speed and timestamp.
Adjusts the distance based on the starting line coordinates and direction.
Args:
lap_df (pd.DataFrame): DataFrame containing lap data with columns 'speed', 'timestamp', 'X', and 'Y'.
start_x (float): X-coordinate of the starting line.
start_y (float): Y-coordinate of the starting line.
x_coeff (float): Coefficient for determining direction along the X-axis.
y_coeff (float): Coefficient for determining direction along the Y-axis.
Returns:
pd.DataFrame: Updated DataFrame with a new 'Distance' column representing the cumulative distance.
"""
if len(lap_df) > 0:
# Calculate cumulative distance based on speed and time difference
dt_diff = lap_df["timestamp"].diff().dt.total_seconds()
# dt_diff.iloc[0] = lap_df["timestamp"].iloc[0].total_seconds()
dt_diff.iloc[0] = 0
lap_df["Distance"] = ((((lap_df.Speed + lap_df.Speed.shift(1)) / 2) / 3.6) * dt_diff).cumsum()
# Get the first row to determine the starting line position
start_line = lap_df.iloc[0]
# Determine the direction based on the starting line coordinates and coefficients
if ((start_line.X - start_x) / x_coeff > 0) & ((start_line.Y - start_y) / y_coeff > 0):
direction = 1
else:
direction = -1
# Calculate the initial distance from the starting line
distance = direction * (((start_line.X - start_x)**2 + (start_line.Y - start_y)**2)**0.5) / 10
# Adjust the cumulative distance with the initial distance
# lap_df["Distance"] = distance + lap_df["Distance"].fillna(0)
lap_df["Distance"] = distance + lap_df["Distance"]
return lap_df
[docs]
def add_track_status(laps_df, df_track):
temp_df = laps_df.copy()
temp_df = temp_df.set_index("LapStartTime").join(df_track.set_index("timestamp")[["Status","Message"]], how="outer")
temp_df.LapNo = temp_df.LapNo.ffill()
temp_df.Status = temp_df.Status.ffill().bfill()
laps_df = laps_df.set_index("LapNo").join(temp_df.groupby("LapNo").Status.unique().apply(lambda x: ",".join(x))).reset_index().rename(columns={"Status":"TrackStatus"})
# temp_df.Message = temp_df.Message.ffill()
# laps_df = laps_df.set_index("LapNo").join(temp_df.groupby("LapNo").Message.unique().apply(lambda x: ",".join(x))).reset_index()
return laps_df
[docs]
def add_track_status_telemetry(telemetry_df, df_track):
telemetry_df = telemetry_df.set_index("timestamp").join(df_track.set_index("timestamp")[["Status"]]).rename(columns={"Status":"TrackStatus"})
telemetry_df.TrackStatus = telemetry_df.TrackStatus.ffill()
return telemetry_df.dropna(subset="SessionKey").reset_index()
[docs]
def generate_laps_table(session, df_exp, df_rcm, df_tyre, df_track):
def delete_laps(laps_df, df_rcm):
laps_df["IsDeleted"] = False
df_rcm_del = df_rcm[(df_rcm["Category"] == "Other") & (df_rcm.Message.str.split(" ").str[0] == "CAR")]
df_rcm_del["deleted_driver"] = df_rcm_del.Message.str.split(" ").str[1]
df_rcm_del["deleted_type"] = df_rcm_del.Message.str.split(" ").str[3]
df_rcm_del["deleted_time"] = df_rcm_del.apply(lambda x: x.Message.split(" ")[4] if x.deleted_type == "TIME" else None, axis=1)
for idx, row in df_rcm_del[df_rcm_del["Message"].str.contains("REINSTATED") & (df_rcm_del["deleted_type"] == "TIME")].iterrows():
driver = row.deleted_driver
time = row.deleted_time
df_rcm_del = df_rcm_del.drop(df_rcm_del[(df_rcm_del.deleted_driver == driver) & (df_rcm_del.deleted_time == time)].index)
def lap_finder(x):
if len(x.Message.split(" ")) > 12:
if x.deleted_type == "LAP":
return x.Message.split(" ")[12]
elif x.deleted_type == "TIME":
return x.Message.split(" ")[13]
else:
return None
else:
return None
if len(df_rcm_del) > 0:
df_rcm_del["deleted_lap"] = df_rcm_del.apply(lambda x: lap_finder(x), axis=1)
for idx, row in df_rcm_del.iterrows():
try: int(row["deleted_lap"])
except: continue
row_bool = (laps_df["LapNo"] == int(row["deleted_lap"])) & (laps_df["DriverNo"] == row["deleted_driver"])
laps_df.loc[row_bool, "IsDeleted"] = True
laps_df.loc[row_bool, "DeletionMessage"] = row["Message"]
return laps_df
# Get Timing Data
# Get Race Control Messages
# Get Tyre Stint Data
df_tyre["timestamp"] = pd.to_timedelta(df_tyre["timestamp"])
# Get Session Data
sessionKey = df_exp["SessionKey"].values[0]
if "_deleted" not in df_exp.columns:
df_exp["_deleted"] = None
else:
df_exp["_deleted"] = df_exp["_deleted"].fillna(False)
sector_cols = {
"Sectors_0_Value": "Sector1_Time",
"Sectors_1_Value": "Sector2_Time",
"Sectors_2_Value": "Sector3_Time",
"Sectors_0_PreviousValue": None,
"Sectors_1_PreviousValue": None,
"Sectors_2_PreviousValue": None
}
speedTrap_cols = {
"Speeds_I1_Value": "Speed_I1",
"Speeds_I2_Value": "Speed_I2",
"Speeds_FL_Value": "Speed_FL",
"Speeds_ST_Value": "Speed_ST",
}
pit_cols = {
"InPit": "PitIn",
"PitOut": "PitOut"
}
base_cols = {
"NumberOfLaps": "LapNo",
"LastLapTime_Value": "LapTime"
}
extra_cols = [
"NoPits",
"sector1_finish_timestamp",
"sector2_finish_timestamp",
"sector3_finish_timestamp"
]
extra_raw_cols = ["RacingNumber","Stopped","_deleted"]
col_map = {**base_cols, **pit_cols, **sector_cols, **speedTrap_cols}
cols = list(base_cols.values()) + list(pit_cols.values()) + list(sector_cols.values()) + list(speedTrap_cols.values())
raw_cols = list(base_cols.keys()) + list(pit_cols.keys()) + list(sector_cols.keys()) + list(speedTrap_cols.keys()) + extra_raw_cols
def str_timedelta(x):
if isinstance(x, str):
count_sep = x.count(":")
if count_sep == 0:
return "00:00:" + x
elif count_sep == 1:
return "00:" + x
else:
return x
else:
return x
def enter_new_lap(laps, record):
if laps is None and record is None:
NoPits = 0
laps = []
record = {key: None if key != "LapNo" else 1 for key in cols}
record["NoPits"] = NoPits
return [], record, timedelta(seconds=0)
if (record["LapTime"] is None) & ((record["Sector1_Time"] != None) and (record["Sector2_Time"] != None) and (record["Sector3_Time"] != None)):
record["LapTime"] = record["Sector1_Time"] + record["Sector2_Time"] + record["Sector3_Time"]
laps.append(record)
NoPits = record["NoPits"]
record = {key: None if key != "LapNo" else val + 1 for key, val in record.items()}
record["NoPits"] = NoPits
return laps, record
all_laps = []
for driver_no in df_exp["DriverNo"].unique():
df_driver = df_exp[df_exp["DriverNo"] == driver_no]
df_test = df_driver[["timestamp"] + raw_cols].dropna(subset=raw_cols, how="all").replace('', np.nan)
for col in ["Sectors_0_Value", "Sectors_1_Value", "Sectors_2_Value", "Sectors_0_PreviousValue", "Sectors_1_PreviousValue", "Sectors_2_PreviousValue", "LastLapTime_Value"]:
df_test[col] = df_test[col]
df_test[col] = pd.to_timedelta(df_test[col].apply(str_timedelta))
new_lap_allowed = True
laps, record, last_record_ts = enter_new_lap(None, None)
for idx, row in df_test[df_test.RacingNumber.isna()].iterrows():
ts = pd.to_timedelta(row.timestamp)
if row.Stopped == True:
laps, record = enter_new_lap(laps, record)
continue
if not pd.isnull(row.LastLapTime_Value):
if not pd.isnull(row.Sectors_2_Value):
record[col_map["LastLapTime_Value"]] = row.LastLapTime_Value
elif not pd.isnull(row.Sectors_2_PreviousValue):
laps[-1][col_map["LastLapTime_Value"]] = row.LastLapTime_Value
## Iterate over all columns
for sc_key, sc_value in row.to_dict().items():
if (sc_key == "_deleted"): continue
elif not pd.isna(sc_value):
if sc_key in speedTrap_cols:
record[col_map[sc_key]] = sc_value
elif sc_key in pit_cols:
if sc_key == "InPit":
if sc_value == 1:
record[col_map[sc_key]] = ts
elif sc_key == "PitOut":
if sc_value == True:
record[col_map[sc_key]] = ts
record["NoPits"] += 1
elif sc_key in sector_cols:
sc_no = int(sc_key.split("_")[1])
key_type = sc_key.split("_")[2]
if key_type == "Value":
if record[f"Sector{str(sc_no + 1)}_Time"] == None:
record[f"Sector{str(sc_no + 1)}_Time"] = sc_value
last_record_ts = ts
if sc_no == 2:
laps, record = enter_new_lap(laps, record)
record["LapStartTime"] = ts
elif sc_value == record[f"Sector{str(sc_no + 1)}_Time"]:
pass
elif ts - last_record_ts > timedelta(seconds=10):
laps, record = enter_new_lap(laps, record)
record[f"Sector{str(sc_no + 1)}_Time"] = sc_value
record["LapStartTime"] = ts - sc_value
last_record_ts = ts
elif key_type == "PreviousValue":
if sc_no != 2:
record[f"Sector{str(sc_no + 1)}_Time"] = sc_value
last_record_ts = ts
elif len(laps) > 0:
laps[-1][f"Sector{str(sc_no + 1)}_Time"] = sc_value
last_record_ts = ts
# Aggregate all laps data of the driver
laps_df = pd.DataFrame(laps)
laps_df["DriverNo"] = driver_no
if "LapStartTime" in laps_df.columns: laps_df = add_track_status(laps_df, df_track)
all_laps.append(laps_df)
all_laps_df = pd.concat(all_laps, ignore_index=True)
new_ts = (all_laps_df["LapStartTime"] + all_laps_df["LapTime"]).shift(1)
all_laps_df["LapStartTime"] = (new_ts.isnull() * all_laps_df["LapStartTime"]) + new_ts.fillna(timedelta(0))
all_laps_df["LapStartDate"] = (all_laps_df["LapStartTime"] + session.first_datetime).fillna(session.session_start_datetime)
all_laps_df["LapStartTime"] = all_laps_df["LapStartTime"].fillna(all_laps_df.iloc[1].LapStartTime - (all_laps_df.iloc[1].LapStartDate - all_laps_df.iloc[0].LapStartDate))
# Delete laps
all_laps_df = delete_laps(all_laps_df, df_rcm)
# Add session data
all_laps_df["SessionKey"] = sessionKey
# Add driver data
all_laps_df["Driver"] = all_laps_df["DriverNo"].map(session.drivers)
# Add pit data
if session.check_data_name("PitStopSeries"):
# Get Pit Stop Data
df_pit = session.get_data("PitStopSeries", level="bronze")
df_pit = df_pit[["RacingNumber", "PitStopTime", "PitLaneTime", "Lap"]].rename(columns={"RacingNumber": "DriverNo", "Lap":"LapNo", "PitStopTime": "PitStopDuration", "PitLaneTime":"PitLaneDuration"})
df_pit["LapNo"] = df_pit["LapNo"].astype(int)
all_laps_df = all_laps_df.set_index(["DriverNo", "LapNo"]).join(df_pit.set_index(["DriverNo", "LapNo"])).reset_index()
# Add tyre data
all_laps_df["LapEndTime"] = all_laps_df["LapStartTime"] + all_laps_df["LapTime"]
all_laps_df = all_laps_df.set_index(["DriverNo", "LapEndTime"]).join(
df_tyre.rename(columns={"timestamp":"LapEndTime", "TotalLaps":"TyreAge"}).set_index(["DriverNo", "LapEndTime"]),
how="outer"
)
all_laps_df[["Compound","New","TyreAge"]] = all_laps_df.groupby('DriverNo')[["Compound","New","TyreAge"]].ffill()
all_laps_df = all_laps_df.reset_index().dropna(subset = "SessionKey")
for col in silver_laps_col_order:
if col not in all_laps_df.columns:
all_laps_df[col] = None
return all_laps_df[silver_laps_col_order]
[docs]
def generate_car_telemetry_table(session, df_car, df_pos, df_tyre, laps, df_track):
"""
Generates a telemetry table for car data by combining and processing position and car data
from the provided BronzeLake object. The function interpolates missing data, aligns it with
session laps, and calculates cumulative distance covered during each lap.
Args:
bronze_lake (BronzeLake): An object containing the raw position and car data, as well as
session and circuit information.
Returns:
pd.DataFrame: A DataFrame containing processed telemetry data for all drivers, including:
- DriverNo: Driver number.
- Utc: Timestamp in UTC.
- LapNo: Lap number for the driver.
- Distance: Cumulative distance covered during the lap.
- SessionKey: Session identifier.
- timestamp: Time elapsed since the session start.
- Other interpolated and processed telemetry data.
Notes:
- The function interpolates missing data based on predefined interpolation methods.
- Data is filtered to include only timestamps within the lap start and end times.
- Cumulative distance is calculated for each lap using speed and timestamp data, adjusted
for the circuit's starting line position and direction.
Raises:
ValueError: If required data is missing or cannot be processed.
"""
# Get position data
df_pos["Utc"] = to_datetime(df_pos["Utc"])
# Get car data
df_car["Utc"] = to_datetime(df_car["Utc"])
df_car["timestamp"] = pd.to_timedelta(df_car["timestamp"])
# Get tyre data
df_tyre["timestamp"] = pd.to_timedelta(df_tyre["timestamp"])
# Join car and position data
df = df_car.set_index(["DriverNo", "Utc"]).join(df_pos.set_index(["DriverNo", "Utc"]), rsuffix="_pos", how="outer").reset_index().sort_values(["DriverNo", "Utc"]).rename(columns={"Status":"CarStatus"})
df["CarStatus"] = df["CarStatus"].ffill()
all_drivers_data = []
for driver_no in df["DriverNo"].unique():
df_driver = df[df["DriverNo"] == driver_no].set_index("Utc")
laps = session.data_lake.silver.lake["laps"].df
laps_driver = laps[laps["DriverNo"] == driver_no]
for col in df_driver.columns:
if col in interpolation_map:
if len(df_driver[col].dropna()) < len(df_driver)*0.2:
continue
df_driver[col] = df_driver[col].interpolate(method=interpolation_map[col], order=2).values
laps_driver.loc[:, "lap_end_date"] = laps_driver["LapStartDate"] + laps_driver["LapTime"]
df_driver = df_driver.join(laps_driver[["LapStartDate", "LapNo"]].set_index("LapStartDate"), how="outer")
df_driver["LapNo"] = df_driver["LapNo"].ffill().bfill()
df_driver.index.names = ['Utc']
df_driver = df_driver.reset_index()
df_driver = df_driver[df_driver.Utc.between(laps_driver["LapStartDate"].min(), laps_driver["lap_end_date"].max())]
df_driver["SessionKey"] = df_driver["SessionKey"].ffill().bfill()
df_driver["timestamp"] = df_driver["Utc"] - session.first_datetime
df_driver = df_driver.dropna(subset=["DriverNo"])
# Iterate through each unique lap number for the driver to calculate and add the cumulative distance
# covered during the lap based on speed and timestamp, adjusted for the starting line position.
for lap_no in df_driver["LapNo"].unique():
lap_df = df_driver[df_driver["LapNo"] == lap_no]
lap_df = add_distance_to_lap(
lap_df,
session.meeting.circuit.start_coordinates[0],
session.meeting.circuit.start_coordinates[1],
session.meeting.circuit.start_direction[0],
session.meeting.circuit.start_direction[1]
)
df_driver.loc[lap_df.index, "Distance"] = lap_df["Distance"].values
df_driver = add_track_status_telemetry(df_driver, df_track)
all_drivers_data.append(df_driver)
all_drivers_df = pd.concat(all_drivers_data, ignore_index=True)
# Add Tyre Data
all_drivers_df = all_drivers_df.set_index(["DriverNo", "timestamp"]).join(
df_tyre.rename(columns={"TotalLaps":"TyreAge"}).set_index(["DriverNo", "timestamp"]),
how="outer"
)
all_drivers_df[["Compound","New","TyreAge"]] = all_drivers_df.groupby('DriverNo')[["Compound","New","TyreAge"]].ffill()
all_drivers_df = all_drivers_df.reset_index().dropna(subset = ["SessionKey"])
return all_drivers_df[silver_cartel_col_order]