Source code for livef1.data_processing.silver_functions

import pandas as pd
import numpy as np
from datetime import timedelta
import re

from ..utils.helper import to_datetime
from ..utils.constants import (
    interpolation_map, 
    silver_cartel_col_order, 
    silver_laps_col_order, 
    FIA_CATEGORY_SCOPE_RULES, 
    penalty_types
)

[docs] def add_distance_to_lap(lap_df, start_x, start_y, x_coeff, y_coeff): """ Calculates the cumulative distance covered by a car during a lap based on its speed and timestamp. Adjusts the distance based on the starting line coordinates and direction. Args: lap_df (pd.DataFrame): DataFrame containing lap data with columns 'speed', 'timestamp', 'X', and 'Y'. start_x (float): X-coordinate of the starting line. start_y (float): Y-coordinate of the starting line. x_coeff (float): Coefficient for determining direction along the X-axis. y_coeff (float): Coefficient for determining direction along the Y-axis. Returns: pd.DataFrame: Updated DataFrame with a new 'Distance' column representing the cumulative distance. """ if len(lap_df) > 0: # Calculate cumulative distance based on speed and time difference dt_diff = lap_df["timestamp"].diff().dt.total_seconds() # dt_diff.iloc[0] = lap_df["timestamp"].iloc[0].total_seconds() dt_diff.iloc[0] = 0 lap_df["Distance"] = ((((lap_df.Speed + lap_df.Speed.shift(1)) / 2) / 3.6) * dt_diff).cumsum() # Get the first row to determine the starting line position start_line = lap_df.iloc[0] # Determine the direction based on the starting line coordinates and coefficients if ((start_line.X - start_x) / x_coeff > 0) & ((start_line.Y - start_y) / y_coeff > 0): direction = 1 else: direction = -1 # Calculate the initial distance from the starting line distance = direction * (((start_line.X - start_x)**2 + (start_line.Y - start_y)**2)**0.5) / 10 # Adjust the cumulative distance with the initial distance # lap_df["Distance"] = distance + lap_df["Distance"].fillna(0) lap_df["Distance"] = distance + lap_df["Distance"] return lap_df
[docs] def add_track_status(laps_df, df_track): temp_df = laps_df.copy() temp_df = temp_df.set_index("LapStartTime").join(df_track.set_index("timestamp")[["Status","Message"]], how="outer") temp_df.LapNo = temp_df.LapNo.ffill() temp_df.Status = temp_df.Status.ffill().bfill() laps_df = laps_df.set_index("LapNo").join(temp_df.groupby("LapNo").Status.unique().apply(lambda x: ",".join(x))).reset_index().rename(columns={"Status":"TrackStatus"}) # temp_df.Message = temp_df.Message.ffill() # laps_df = laps_df.set_index("LapNo").join(temp_df.groupby("LapNo").Message.unique().apply(lambda x: ",".join(x))).reset_index() return laps_df
[docs] def add_track_status_telemetry(telemetry_df, df_track): telemetry_df = telemetry_df.set_index("timestamp").join(df_track.set_index("timestamp")[["Status"]]).rename(columns={"Status":"TrackStatus"}) telemetry_df.TrackStatus = telemetry_df.TrackStatus.ffill() return telemetry_df.dropna(subset="SessionKey").reset_index()
[docs] def add_lineposition(telemetry_df, df_tmg): telemetry_df = telemetry_df.set_index("timestamp").join(df_tmg.set_index("timestamp")[["Position"]], how="outer") telemetry_df.Position = telemetry_df.Position.ffill() return telemetry_df.reset_index()
[docs] def generate_laps_table(session, df_exp, df_rcm, df_tyre, df_track): def delete_laps(laps_df, df_rcm): laps_df["IsDeleted"] = False df_rcm_del = df_rcm[(df_rcm["Category"] == "Other") & (df_rcm.Message.str.split(" ").str[0] == "CAR")] df_rcm_del["deleted_driver"] = df_rcm_del.Message.str.split(" ").str[1] df_rcm_del["deleted_type"] = df_rcm_del.Message.str.split(" ").str[3] df_rcm_del["deleted_time"] = df_rcm_del.apply(lambda x: x.Message.split(" ")[4] if x.deleted_type == "TIME" else None, axis=1) for idx, row in df_rcm_del[df_rcm_del["Message"].str.contains("REINSTATED") & (df_rcm_del["deleted_type"] == "TIME")].iterrows(): driver = row.deleted_driver time = row.deleted_time df_rcm_del = df_rcm_del.drop(df_rcm_del[(df_rcm_del.deleted_driver == driver) & (df_rcm_del.deleted_time == time)].index) def lap_finder(x): if len(x.Message.split(" ")) > 12: if x.deleted_type == "LAP": return x.Message.split(" ")[12] elif x.deleted_type == "TIME": return x.Message.split(" ")[13] else: return None else: return None if len(df_rcm_del) > 0: df_rcm_del["deleted_lap"] = df_rcm_del.apply(lambda x: lap_finder(x), axis=1) for idx, row in df_rcm_del.iterrows(): try: int(row["deleted_lap"]) except: continue row_bool = (laps_df["LapNo"] == int(row["deleted_lap"])) & (laps_df["DriverNo"] == row["deleted_driver"]) laps_df.loc[row_bool, "IsDeleted"] = True laps_df.loc[row_bool, "DeletionMessage"] = row["Message"] return laps_df df_tyre["timestamp"] = pd.to_timedelta(df_tyre["timestamp"]) sessionKey = df_exp["SessionKey"].values[0] if "_deleted" not in df_exp.columns: df_exp["_deleted"] = None else: df_exp["_deleted"] = df_exp["_deleted"].fillna(False) sector_cols = { "Sectors_0_Value": "Sector1_Time", "Sectors_1_Value": "Sector2_Time", "Sectors_2_Value": "Sector3_Time", "Sectors_0_PreviousValue": None, "Sectors_1_PreviousValue": None, "Sectors_2_PreviousValue": None } speedTrap_cols = { "Speeds_I1_Value": "Speed_I1", "Speeds_I2_Value": "Speed_I2", "Speeds_FL_Value": "Speed_FL", "Speeds_ST_Value": "Speed_ST", } pit_cols = { "InPit": "PitIn", "PitOut": "PitOut" } base_cols = { "NumberOfLaps": "LapNo", "LastLapTime_Value": "LapTime" } misc_cols = { "Position": "Position" } if session.type == "Race": misc_cols["GapToLeader"] = "GapToLeader" misc_cols["IntervalToPositionAhead_Value"] = "IntervalToPositionAhead" extra_cols = [ "NoPits", "sector1_finish_timestamp", "sector2_finish_timestamp", "sector3_finish_timestamp" ] extra_raw_cols = ["RacingNumber","Stopped","_deleted"] col_map = {**base_cols, **pit_cols, **sector_cols, **speedTrap_cols, **misc_cols} cols = list(base_cols.values()) + list(pit_cols.values()) + list(sector_cols.values()) + list(speedTrap_cols.values()) + list(misc_cols.values()) raw_cols = list(base_cols.keys()) + list(pit_cols.keys()) + list(sector_cols.keys()) + list(speedTrap_cols.keys()) + list(misc_cols.keys()) + extra_raw_cols def str_timedelta(x): if isinstance(x, str): count_sep = x.count(":") if count_sep == 0: return "00:00:" + x elif count_sep == 1: return "00:" + x else: return x else: return x def enter_new_lap(laps, record): if laps is None and record is None: NoPits = 0 laps = [] record = {key: None if key != "LapNo" else 1 for key in cols} record["NoPits"] = NoPits return [], record, timedelta(seconds=0) if (record["LapTime"] is None) & ((record["Sector1_Time"] != None) and (record["Sector2_Time"] != None) and (record["Sector3_Time"] != None)): record["LapTime"] = record["Sector1_Time"] + record["Sector2_Time"] + record["Sector3_Time"] last_position = record["Position"] laps.append(record) NoPits = record["NoPits"] record = {key: None if key != "LapNo" else val + 1 for key, val in record.items()} record["NoPits"] = NoPits record["Position"] = last_position return laps, record all_laps = [] for driver_no in df_exp["DriverNo"].unique(): df_driver = df_exp[df_exp["DriverNo"] == driver_no] df_test = df_driver[["timestamp"] + raw_cols].dropna(subset=raw_cols, how="all").replace('', np.nan) for col in ["Sectors_0_Value", "Sectors_1_Value", "Sectors_2_Value", "Sectors_0_PreviousValue", "Sectors_1_PreviousValue", "Sectors_2_PreviousValue", "LastLapTime_Value"]: df_test[col] = df_test[col] df_test[col] = pd.to_timedelta(df_test[col].apply(str_timedelta)) new_lap_allowed = True laps, record, last_record_ts = enter_new_lap(None, None) for idx, row in df_test[df_test.RacingNumber.isna()].iterrows(): ts = pd.to_timedelta(row.timestamp) if row.Stopped == True: laps, record = enter_new_lap(laps, record) continue if not pd.isnull(row.LastLapTime_Value): if not pd.isnull(row.Sectors_2_Value): record[col_map["LastLapTime_Value"]] = row.LastLapTime_Value elif not pd.isnull(row.Sectors_2_PreviousValue): laps[-1][col_map["LastLapTime_Value"]] = row.LastLapTime_Value ## Iterate over all columns for sc_key, sc_value in row.to_dict().items(): if (sc_key == "_deleted"): continue elif not pd.isna(sc_value): if sc_key in speedTrap_cols: record[col_map[sc_key]] = float(sc_value) elif sc_key in pit_cols: if sc_key == "InPit": if sc_value == 1: record[col_map[sc_key]] = ts elif sc_key == "PitOut": if sc_value == True: record[col_map[sc_key]] = ts record["NoPits"] += 1 elif sc_key in misc_cols: if sc_key == "Position": if sc_value is not None: record[col_map[sc_key]] = sc_value elif sc_key == "GapToLeader": if sc_value is not None: if "LAP" in sc_value: record[col_map[sc_key]] = float(0) elif "L" in sc_value: record[col_map[sc_key]] = None elif sc_value == "": record[col_map[sc_key]] = None else: record[col_map[sc_key]] = float(sc_value) elif sc_key == "IntervalToPositionAhead_Value": if sc_value is not None: if "LAP" in sc_value: record[col_map[sc_key]] = float(0) elif "L" in sc_value: record[col_map[sc_key]] = None elif sc_value == "": record[col_map[sc_key]] = None else: record[col_map[sc_key]] = float(sc_value) elif sc_key in sector_cols: sc_no = int(sc_key.split("_")[1]) key_type = sc_key.split("_")[2] if key_type == "Value": if record[f"Sector{str(sc_no + 1)}_Time"] == None: record[f"Sector{str(sc_no + 1)}_Time"] = sc_value last_record_ts = ts if sc_no == 2: laps, record = enter_new_lap(laps, record) record["LapStartTime"] = ts elif sc_value == record[f"Sector{str(sc_no + 1)}_Time"]: pass elif ts - last_record_ts > timedelta(seconds=10): laps, record = enter_new_lap(laps, record) record[f"Sector{str(sc_no + 1)}_Time"] = sc_value record["LapStartTime"] = ts - sc_value last_record_ts = ts elif key_type == "PreviousValue": if sc_no != 2: record[f"Sector{str(sc_no + 1)}_Time"] = sc_value last_record_ts = ts elif len(laps) > 0: laps[-1][f"Sector{str(sc_no + 1)}_Time"] = sc_value last_record_ts = ts # Aggregate all laps data of the driver laps_df = pd.DataFrame(laps) laps_df["DriverNo"] = driver_no if "LapStartTime" in laps_df.columns: laps_df = add_track_status(laps_df, df_track) all_laps.append(laps_df) all_laps_df = pd.concat(all_laps, ignore_index=True) new_ts = (all_laps_df["LapStartTime"] + all_laps_df["LapTime"]).shift(1) all_laps_df["LapStartTime"] = (new_ts.isnull() * all_laps_df["LapStartTime"]) + new_ts.fillna(timedelta(0)) all_laps_df["LapStartDate"] = (all_laps_df["LapStartTime"] + session.first_datetime).fillna(session.session_start_datetime) all_laps_df["LapStartTime"] = all_laps_df["LapStartTime"].fillna(all_laps_df.iloc[1].LapStartTime - (all_laps_df.iloc[1].LapStartDate - all_laps_df.iloc[0].LapStartDate)) # Delete laps all_laps_df = delete_laps(all_laps_df, df_rcm) # Add session data all_laps_df["SessionKey"] = sessionKey # Add driver data all_laps_df["Driver"] = all_laps_df["DriverNo"].map(session.drivers) # Add pit data # if session.check_data_name("PitStopSeries"): if "PitStopSeries" in session.topic_names_info: # Get Pit Stop Data df_pit = session.get_data("PitStopSeries", level="bronze") df_pit = df_pit[["RacingNumber", "PitStopTime", "PitLaneTime", "Lap"]].rename(columns={"RacingNumber": "DriverNo", "Lap":"LapNo", "PitStopTime": "PitStopDuration", "PitLaneTime":"PitLaneDuration"}) df_pit["LapNo"] = df_pit["LapNo"].astype(int) all_laps_df = all_laps_df.set_index(["DriverNo", "LapNo"]).join(df_pit.set_index(["DriverNo", "LapNo"])).reset_index() # Add tyre data all_laps_df["LapEndTime"] = all_laps_df["LapStartTime"] + all_laps_df["LapTime"] all_laps_df = all_laps_df.set_index(["DriverNo", "LapEndTime"]).join( df_tyre.rename(columns={"timestamp":"LapEndTime", "TotalLaps":"TyreAge"}).set_index(["DriverNo", "LapEndTime"]), how="outer" ) all_laps_df[["Compound","New","TyreAge"]] = all_laps_df.groupby('DriverNo')[["Compound","New","TyreAge"]].ffill() all_laps_df = all_laps_df.reset_index().dropna(subset = "SessionKey") for col in silver_laps_col_order: if col not in all_laps_df.columns: all_laps_df[col] = None return all_laps_df[silver_laps_col_order]
[docs] def assign_regions(tel_cor, df_corners): # Example: same bins_df as above conditions = [ (tel_cor["Distance"] >= row['corner_start']) & (tel_cor["Distance"] < row['corner_end']) if row["corner_end"] >= row["corner_start"] else (tel_cor["Distance"] >= row['corner_start']) | (tel_cor["Distance"] < row['corner_end']) for _, row in df_corners.iterrows() ] choices = df_corners['name'].tolist() return np.select(conditions, choices, default=None)
[docs] def generate_car_telemetry_table(session, df_car, df_pos, df_tyre, laps, df_track, df_tmg, df_circuits): """ Generates a telemetry table for car data by combining and processing position and car data from the provided BronzeLake object. The function interpolates missing data, aligns it with session laps, and calculates cumulative distance covered during each lap. Args: bronze_lake (BronzeLake): An object containing the raw position and car data, as well as session and circuit information. Returns: pd.DataFrame: A DataFrame containing processed telemetry data for all drivers, including: - DriverNo: Driver number. - Utc: Timestamp in UTC. - LapNo: Lap number for the driver. - Distance: Cumulative distance covered during the lap. - SessionKey: Session identifier. - timestamp: Time elapsed since the session start. - Other interpolated and processed telemetry data. Notes: - The function interpolates missing data based on predefined interpolation methods. - Data is filtered to include only timestamps within the lap start and end times. - Cumulative distance is calculated for each lap using speed and timestamp data, adjusted for the circuit's starting line position and direction. Raises: ValueError: If required data is missing or cannot be processed. """ # Get position data df_pos["Utc"] = to_datetime(df_pos["Utc"]) df_pos["tag"] = "position" # Get car data df_car["Utc"] = to_datetime(df_car["Utc"]) df_car["timestamp"] = pd.to_timedelta(df_car["timestamp"]) df_car["tag"] = "car" # Get tyre data df_tyre["timestamp"] = pd.to_timedelta(df_tyre["timestamp"]) # Join car and position data df = df_car \ .set_index(["DriverNo", "Utc"]) \ .join(df_pos.set_index(["DriverNo", "Utc"]), rsuffix="_pos", how="outer") \ .reset_index().sort_values(["DriverNo", "Utc"]) \ .rename(columns={"Status":"CarStatus"}) df["CarStatus"] = df["CarStatus"].ffill() df["tag"] = df["tag"].fillna("") + df["tag_pos"].fillna("") all_drivers_data = [] for driver_no in df["DriverNo"].unique(): df_driver = df[df["DriverNo"] == driver_no].set_index("Utc") laps = session.data_lake.silver.lake["laps"].df laps_driver = laps[laps["DriverNo"] == driver_no] for col in df_driver.columns: if col in interpolation_map: if len(df_driver[col].dropna()) < len(df_driver)*0.2: continue df_driver[col] = df_driver[col].interpolate(method=interpolation_map[col], order=2).values laps_driver.loc[:, "lap_end_date"] = laps_driver["LapStartDate"] + laps_driver["LapTime"] df_driver = df_driver.join(laps_driver[["LapStartDate", "LapNo"]].set_index("LapStartDate"), how="outer") df_driver["LapNo"] = df_driver["LapNo"].ffill().bfill() df_driver.index.names = ['Utc'] df_driver = df_driver.reset_index() df_driver = df_driver[df_driver.Utc.between(laps_driver["LapStartDate"].min(), laps_driver["lap_end_date"].max())] df_driver["SessionKey"] = df_driver["SessionKey"].ffill().bfill() df_driver["timestamp"] = df_driver["Utc"] - session.first_datetime df_driver = df_driver.dropna(subset=["DriverNo"]) # Iterate through each unique lap number for the driver to calculate and add the cumulative distance # covered during the lap based on speed and timestamp, adjusted for the starting line position. for lap_no in df_driver["LapNo"].unique(): lap_df = df_driver[df_driver["LapNo"] == lap_no] if hasattr(session.meeting.circuit, "start_coordinates"): lap_df = add_distance_to_lap( lap_df, session.meeting.circuit.start_coordinates[0], session.meeting.circuit.start_coordinates[1], session.meeting.circuit.start_direction[0], session.meeting.circuit.start_direction[1] ) df_driver.loc[lap_df.index, "Distance"] = lap_df["Distance"].values else: df_driver.loc[lap_df.index, "Distance"] = None df_driver = add_track_status_telemetry(df_driver, df_track) df_driver = add_lineposition(df_driver, df_tmg[df_tmg.DriverNo == driver_no]) ## TODO: Add race distance # if len(df_driver) > 0: # race_distance = add_distance_to_lap( # df_driver.copy(), # session.meeting.circuit.start_coordinates[0], # session.meeting.circuit.start_coordinates[1], # session.meeting.circuit.start_direction[0], # session.meeting.circuit.start_direction[1] # )["Distance"].values # df_driver["RaceDistance"] = race_distance # print("added race distance :", driver_no, race_distance) all_drivers_data.append(df_driver) all_drivers_df = pd.concat(all_drivers_data, ignore_index=True) # Add Tyre Data all_drivers_df = all_drivers_df.set_index(["DriverNo", "timestamp"]).join( df_tyre.rename(columns={"TotalLaps":"TyreAge"}).set_index(["DriverNo", "timestamp"]), how="outer" ) all_drivers_df[["Compound","New","TyreAge"]] = all_drivers_df.groupby('DriverNo')[["Compound","New","TyreAge"]].ffill() all_drivers_df = all_drivers_df.reset_index().dropna(subset = ["SessionKey"]) if hasattr(session.meeting.circuit, "start_coordinates"): all_drivers_df["TrackRegion"] = assign_regions(all_drivers_df, df_circuits) else: all_drivers_df["TrackRegion"] = None return all_drivers_df[silver_cartel_col_order]
[docs] def generate_race_control_messages_table(session, rcm_df): """ Processes and generates a DataFrame of race control messages for a given session. This function takes race control messages and session context, parses category and scope information, and structures the data for analysis. It does not interpolate values or align events to lap distances, but instead extracts and organizes categorical details (such as category, scope, flag, mode, and status) found in race control messages. Args: session: The session object containing circuit and meeting information. df_rcm (pd.DataFrame): DataFrame containing raw race control messages with at least the columns ['Message', 'Category', 'Scope', 'Flag', 'Mode', 'Status']. Returns: pd.DataFrame: A DataFrame with processed race control message records, including extracted and clarified category and scope values for each message, along with relevant timestamps and context fields. """ def parse_cars_from_message(message): """ Parse car numbers from race control messages. Handles two distinct cases: 1. Messages with "CAR" (singular) - extracts single car numbers 2. Messages with "CARS" (plural) - extracts multiple car numbers Avoids extracting: - Lap numbers (LAP 8, LAP 14) - Timestamps (15:11:52, 16:05.442) - Turn numbers (TURN 11, TURN 5) - Lap times (1:12.542) """ if pd.isna(message) or not message: return None cars = [] message_upper = message.upper() # Helper function to check if a number is likely a car number (not lap, turn, timestamp, etc.) def is_valid_car_number(num_str, context_before, context_after): """Check if a number is a valid car number based on surrounding context.""" # Check if it's part of a timestamp pattern (HH:MM:SS or MM:SS) if re.search(r'\d+\s*:\s*' + re.escape(num_str) + r'\s*:\s*\d+', context_before + num_str + context_after): return False if re.search(re.escape(num_str) + r'\s*:\s*\d+', context_after): return False # Check if it's a lap number (LAP followed by number) if re.search(r'LAP\s+' + re.escape(num_str) + r'\b', context_before + num_str + context_after, re.IGNORECASE): return False # Check if it's a turn number (TURN followed by number) if re.search(r'TURN\s+' + re.escape(num_str) + r'\b', context_before + num_str + context_after, re.IGNORECASE): return False # Check if it's part of a lap time (like 1:12.542 or 16:05.442) # Pattern: digit(s):digit(s).digit(s) or digit(s):digit(s):digit(s) if re.search(r'\d+\s*:\s*' + re.escape(num_str) + r'\s*\.\s*\d+', context_before + num_str + context_after): return False return True # Case 1: Handle "CAR" (singular) patterns # Check if message contains "CAR " but not "CARS " (to avoid matching "CARS" as "CAR") if re.search(r'\bCAR\s+', message_upper) and not re.search(r'\bCARS\s+', message_upper): # Pattern: "CAR" followed by number, optionally followed by "(DRIVER_CODE)" # Examples: "CAR 23 (ALB)", "CAR 55 (SAI) TIME", "INCIDENT INVOLVING CAR 55" car_pattern = r'(?i)\bCAR\s+(\d+)' matches = list(re.finditer(car_pattern, message)) for match in matches: car_num = match.group(1) match_start = match.start() match_end = match.end() # Get context around the match context_before = message[max(0, match_start - 30):match_start] context_after = message[match_end:min(len(message), match_end + 30)] # Check if this is a valid car number (not lap, turn, timestamp, etc.) if is_valid_car_number(car_num, context_before, context_after): cars.append(int(car_num)) # Case 2: Handle "CARS" (plural) patterns elif re.search(r'\bCARS\s+', message_upper): # Pattern: "CARS" followed by numbers with driver codes in parentheses # Handles: "CARS 44 (HAM) AND 18 (STR)", "CARS 63 (RUS), 18 (STR), 2 (SAR)", etc. # Match from "CARS" to the end of the car list (stops at keywords like "NOTED", "WILL", etc.) # The pattern matches: number + (driver_code) + (comma or AND) + (repeat) cars_pattern = r'(?i)\bCARS\s+((?:\d+\s*\([^)]+\)(?:\s*,\s*|\s+AND\s+)?)+?)(?=\s+(?:NOTED|WILL|REVIEWED|NO|FIA|$))' cars_match = re.search(cars_pattern, message) if cars_match: # Extract the section with car numbers cars_section = cars_match.group(1) # Extract all numbers that are followed by parentheses (driver codes) # This ensures we only get car numbers, not other numbers in the message car_numbers = re.findall(r'(\d+)\s*\([^)]+\)', cars_section) for num in car_numbers: cars.append(int(num)) else: # Fallback: if the lookahead pattern doesn't match, try without it cars_pattern_fallback = r'(?i)\bCARS\s+((?:\d+\s*\([^)]+\)(?:\s*,\s*|\s+AND\s+)?)+)' cars_match = re.search(cars_pattern_fallback, message) if cars_match: cars_section = cars_match.group(1) # Limit to reasonable length to avoid matching too much if len(cars_section) < 200: # Reasonable limit for car list car_numbers = re.findall(r'(\d+)\s*\([^)]+\)', cars_section) for num in car_numbers: cars.append(int(num)) # Remove duplicates while preserving order seen = set() unique_cars = [] for car in cars: if car not in seen: seen.add(car) unique_cars.append(car) return unique_cars if unique_cars else None def parse_category_scope(row): message = row.Message.upper() category = row.Category scope = row.Scope flag = row.Flag if hasattr(row, "Mode"): mode = row.Mode else: mode = None status = row.Status if pd.isna(message): return "Unknown", "Unknown", None, None if category == "Flag": if scope == "Driver": clean_message = message \ .replace(flag,"") \ .replace("WAVED","") \ .replace("FLAG","") \ .replace("FOR","") \ .strip() if flag == "BLUE": info = clean_message.split(" ")[-1] elif flag == "BLACK AND WHITE": info = clean_message.split("-")[-1].strip() elif scope == "Sector": clean_message = message sector = clean_message.split("SECTOR")[-1].strip() info = f"SECTOR {sector}" elif scope == "Track": clean_message = message info = clean_message.split("-")[-1].strip() return category, scope, status, info elif category == "Drs": clean_message = message scope = clean_message.split(" ")[-1].strip() info = None return category, scope, status, info elif category == "SafetyCar": scope = mode info = status return category, scope, status, info elif category == "Other": info = None for category, scopes in FIA_CATEGORY_SCOPE_RULES.items(): for scope, keywords in scopes.items(): if any(k in message for k in keywords): if "-" in message: info = message.split("-")[-1].strip() if category == "Penalty": penalty_type = None for pt in penalty_types: if pt in message: penalty_type = pt break if penalty_type == "TIME PENALTY": match = re.search(r'(\d{1,2})(?=\s*SECOND)', message) penalty_value = match.group(1) if match else None else: penalty_value = None if "PENALTY SERVED" in message: status = "Served" else: status = None info = penalty_value return category, scope, status, info else: return "Other", "Unclassified", None, None rcm_df["RacingNumber"] = rcm_df.Message.apply(lambda x: parse_cars_from_message(x)) rcm_df[["Category", "Scope", "Status", "info"]] = ( rcm_df .apply(lambda m: pd.Series(parse_category_scope(m)), axis=1) ) return rcm_df[ [ "SessionKey", "timestamp", "Utc", "Category", "Scope", "Status", "Flag", "Message", "Lap", "RacingNumber", "info" ] ]